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Calculation of FM and AM Noise Signals of
Colpitts Oscillators in the Time Domain

Introduction

An oscillator is a combination of, an amplifier, a
resonator and phase modulator in a feedback loop. The
value of the loop gain and its phase needs to be enough
to start oscillation and after the steady state condition
maintains oscillation. This is achieved either by voltage
or current limiting, by AGC or limiting diodes and is
well explained in [1], probably the best explanation of its
kind. If such amplitude stabilization would not exist, the
amplifier-oscillator would self-destruct. The limiting part
of the oscillator keeps the AM (noise) well below the FM
noise close-in, but very far-off they reach the same
amplitude. Any deviation from this is due to a heavy
unwanted non-linearity.
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Figure 1 — Block diagram of oscillator and its low pass
equivalent based on Leeson’s model.

The topic here is to look at the noise of an oscillator.

The oscillator is under large signal condition and also
acts like a mixer. Figure 1 shows the block diagram and
its low pass equivalent based on Leeson’s model [2]. The
loop requirement was first mentioned in the Barkhausen
analysis [3]. Initial open loop gain for getting started
needs to be 3, because the steady state value is
approximately 1/3 of the dc transconductance.

The noise has various sources and the following will
look at all the steps [4-7]. For the reason of accuracy the

following is a very detailed but complete mathematical
analysis.

At the end of this, there will be a set of measurements
including details about the results.

In all systems, amplifiers and oscillators, conditions of
saturation (specifically with memory effects), tend to
amplify AM components.

Noise Generation in Oscillators

As shown above, the qualitative linearized picture of
noise generation in oscillators is very well known. The
physical effects of random fluctuations taking place in
the circuit are different depending on their spectral
allocation with respect to the carrier:

Noise components at low frequency deviations result in
frequency modulation of the carrier through mean square
frequency fluctuation proportional to the available noise
power.

Noise components at high frequency deviations result in
phase modulation of the carrier through mean square
phase fluctuation proportional to the available noise
power.
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Figure 2 — Equivalent circuit of a general noisy nonlinear
network

We will demonstrate that the same conclusions can be
quantitatively derived from the HB equations for an
autonomous circuit [5, 8].



Equivalent Representation of a Noisy Nonlinear
Circuit

A general noisy nonlinear network can be described by
the equivalent circuit shown in Figure 2. The circuit is
divided into linear and nonlinear subnetworks as noise-
free multi-ports. Noise generation is accounted for by
connecting a set of noise voltage and noise current
sources at the ports of the linear subnetwork [9-11].

Frequency Conversion Approach

The circuit supports a large-signal time periodic steady
state of fundamental angular frequency (carrier).

Noise signals are small perturbations superimposed on
the steady state, represented by families of pseudo-
sinusoids located at the sidebands of the carrier
harmonics. Therefore, the noise performance of the
circuit is determined by the exchange of the power
among the sidebands of the unperturbed steady state
through frequency conversion in the nonlinear
subnetwork. Due to the perturbative assumption, the
nonlinear subnetwork can be replaced with a multi-
frequency linear multi-port described by a conversion
matrix. The flow of noise signals can be computed by
means of conventional linear circuit techniques.

The frequency conversion approach frequently used has
the following limitations:

The frequency conversion approach is not sufficient to
predict the noise performance of an autonomous circuit.
The spectral density of the output noise power, and
consequently the PM noise computed by the conversion
analysis are proportional to the available power of the
noise sources.

e In the presence of both thermal and flicker noise

sources, PM noise increases: as |
tends to a finite limit foro — .

e Frequency conversion analysis correctly predicts the
far carrier noise behavior of an oscillator, and in
particular the oscillator noise floor; does not provide
results consistent with the physical observations at
low deviations from the carrier.

foro —0;

This inconsistency can be removed by adding the
modulation noise analysis. In order to determine the far
away noise using the autonomous circuit perturbation
analysis, the following applies.

The circuit supports a large-signal time-periodic
autonomous regime. The circuit is perturbed by a set of
small sources located at the carrier harmonics and at the
sidebands at a deviation ® from carrier harmonics. The
perturbation of the circuit state (§X,,5X,, ) is given by

the uncoupled sets of equations,

%Es 5%, = 15(0) M
B

OE

ﬁéx}, = Ji () (2)

where,

Eg, Ey = vectors of HB errors

Xg, Xy = vectors of state variable (SV) harmonics (since
the circuit is autonomous, one of the entries X is replaced
by the fundamental frequency ay)

Jg, Jy = vectors of forcing terms

The subscripts B and H denote sidebands and carrier
harmonics, respectively.

For a spot noise analysis at a frequency o, the noise
sources can be interpreted in either of two ways:

e  Pseudo-sinusoids with random amplitude and phase
located at the sidebands. Noise generation is
described by Equation (1) which is essentially a
frequency conversion equation relating the sideband
harmonics of the state variables and of the noise
sources. This description is exactly equivalent to the
one provided by the frequency conversion approach.
This mechanism is referred to as conversion noise
[12-15].

Sinusoids located at the carrier harmonics are randomly
phase-and-amplitude-modulated by pseudo-sinusoidal
noise at frequency ®. Noise generation is described by
Equation (2), which describes noise-induced jitter of the
circuit-state, represented by the vector §Xy. The

modulated perturbing signals are represented by
replacing the entries of Jy with the complex modulation
laws. This mechanism is referred to as modulation noise.
One of the entries of 38Xy is 8w, where 8w, (0)=

phasor of the pseudo-sinusoidal components of the
fundamental frequency fluctuations in a 1 Hz band at
frequency . Equation (2) provides a frequency jitter
with a mean square value proportional to the available
noise power. In the presence of both thermal and flicker
noise, PM noise raises as ®~ for » — 0and tends to 0
for ®-—>ow. Modulation noise analysis correctly
describes the noise behavior of an oscillator at low
deviations from the carrier and does not provide results
consistent with physical observations at high deviations
from the carrier.

The combination of both phenomena explains the noise
in the oscillator shown in Figure 3, where the near carrier
noise dominates below ®x and far carrier noise
dominates above wx.
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Figure 3 — Oscillator noise components.

Figure 4 (itemized form) shows the noise sources as they
are applied at the IF. We have arbitrarily defined the low
oscillator output as IF. This applies to the conversion
matrix calculation.
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Figure 4 — Noise sources where the noise at each sideband
contributes to the output noise at the IF through frequency
conversion.

Figure 5 shows the total contributions which have to be
taken into consideration for calculation of the noise at the
output. The accuracy of the calculation of the phase
noise depends highly on the quality of the parameter
extraction for the nonlinear device; in particular, high
frequency phenomena must be properly modeled. In
addition, the flicker noise contribution is essential. This
is also valid for mixer noise analysis.

Conversion Noise Analysis

The actual mathematics used to calculate the noise result
(Ansoft Serenade 8.x) is as follows [19],

k™ harmonic PM noise:

Yoo, (o) - Male)= . () 28c, o]

R|Ifs|2 5
k™ harmonic AM noise:
>|5Ak(60}2< =g Nk(w)~N_k(a))4-22 Re[ck (a))]
RII;|
4)
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Figure 5 — Noise mechanisms.

K™ harmonic PM-AM correlation coefficient:
Cr (@)= )50, (0)o4, (@) {

5 2mC @)+ N, (0)- N, (o)

RIrS[

©)

where

N®), N.(®) = noise power spectral densities at the
upper and lower sidebands of the ™ harmonic

Ci(®) = normalized correlation coefficient of the upper
and lower sidebands of the ™ carrier harmonic

R = load resistance

I,* = k™ harmonic of the steady-state current through the
load.

Modulation Noise Analysis

k™ harmonic PM noise:

kz t 13
Joo, @) (== T,)3, (@), o) T; ®
k™ harmonic AM noise:

>|5Ak ((‘)xl< = #TM >JH (W, (a))<T11k

)
k™ harmonic PM-AM correlation coefficient:
cP (@)= )60, (0)54, (0) {
k2 , ,
5 TTF >JH (@), (wXTAk
w|1 h ®)
where

Ju(w) = vector of Norton equivalent of the noise sources
Tr = frequency transfer matrix

R = load resistance




I = k™ harmonic of the steady-state current through the
load.
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Figure 6 — Colpitts Oscillator configuration for the
intrinsic case, no parasitics assumed, and an ideal transistor
considered.

The following two circuits show the transition from a
series tuned circuit connected with the series time-
dependent negative resistance and the resulting input
capacitance marked Cp. Translated, the resulting
configuration consists of a series circuit with inductance
L and the resulting capacitance C'. The noise voltage
en(t) describes a small perturbation, which is the noise
resulting from R; and —Ry(t). Figure 7 shows the
equivalent representation of the oscillator circuit in the
presence of noise.

Ry i(t)

L -Rn(t) L Ry
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Figure 7 — Equivalent representation of the oscillator
circuit in presence of noise.

The circuit equation of the oscillator circuit of Figure 7
can be given as

dz(t)

+(R,-R (t))l(t)+—Iz(t)dt ey (1) )

where i(t) is the time varying resultant current. Due to
the noise voltage exMf), Equation (9) is a
nonhomogeneous differential equation. If the noise
voltage is zero, it translates into a homogeneous
differential equation.

For a noiseless oscillator, the noise signal ey(?) is zero
and the expression of the free-running oscillator current
i(7) can be assumed to be a periodic function of time and
can be given as

i(t)y=1,cos(wt+¢)+1,cosot+¢,)
(10)

+1;cosBat+@,)+....d, cos(no t+¢,)

where /), [, .....I, are peak harmonic amplitudes of the
current and @y, ¢,.....¢, are time invariant phases.

In the presence of the noise perturbation ex(?), the current
i(Y) may no longer be a periodic function of time and can
be expressed as

i(f)=1I,()coswt + @ ()] + 1, () cosRwt + ¢, (f)] +

mn
L(f)cosPBat +p,(O]+ ...0,_,(H)cos[@—2)wt + ¢, ,(1)]+

I, (H)cos[—Nawt + @, ,(D]+1,()coshat + ¢, (1)]

where [,(?), L(?).....I(f) are time variant amplitudes of
the current and @(7), @(?).....@(f) are time variant

phases.

Considering that 7,(f) and ¢,(¢) do not change much over
the period of 2n/nw; each corresponding harmonic over
one period of oscillation cycle remains small and more or
less invariant. The solution of the differential equation
becomes easy since the harmonics are suppressed due to
a Q > 10, which prevents i(f) to flow for the higher
terms.

After the substitution of the value of di i and I i(t)dt

the complete oscillator circuit equation, as given in
Equation (9), can be rewritten as

L{

~ LYo+ 222 (/’1()

dl, (1)

—)sin[wt + ¢, ()] +—— i ———=cos[wt+¢,()]+

()

LG ‘/’2( ))sm[20)t+¢z(t)]+ cosPart +p,(f)]+

® d, (1)

~1,() G+ ‘”’ =2 D)sinBor +,(0)]+ = ZeosBor +g,(0)]+..

(0,.()

—-1,()(no+—=)sinnot+¢,(H)]+———

dI,(f)
d

cosprot + @, (1)]
t +

[(R,-Ry (t))l(t)] h

QEX March/April 2016 25



1.(t)_1,(t)(d¢1(t)
L ® ®* dt
| Ldll(r)

w*\ dt
Iz(t)_Iz(t)[d(oz(t)
20 40\ dt

ﬂ sinf@? + ¢, (1)] +

]cos[wt +¢,(1)]

J:l sinawt + @, (1)

+

Q_|._.

1 (di,(t)
+— yye ( # Jcos(Zcot +¢,(1))

1,(1) Z 13(’)[‘1((73(’)
30 90° dt
1 (dIS(t)

90>\ dt

H sin[3wt + @, (1)] +

e

2

jcos[3wt +¢,()]

[1" o 1,0 (M]]sm[nm +0,0]

1 || no n*e?\ dt
c| 1 (arw wev(d
= 2( = )cos[nwt+(p"(t)]

Because Q > 10 we approximate:

di(t) _ ca.( )
dt

dl, (1)

+ L t+o,(1)]+
= cos[w1 +,(1)]

=1,(t)(w+—=)sin[wt+ ¢,(1)]

+ (a slowly varying function at higher order harmonics of
a very small amount).

[ i(t)dt = {ﬁ - iﬁ)[mﬂ sin[o1 + ¢,(1)]
o w dt

1 (dn
+w2[ - )cos[wt+¢l(t)]+

+ (a slowly varying function at higher order harmonics of
a very small amount).

After the substitution of the value of di/dt and j i(t)dt »

the oscillator circuit Equation (12) can be rewritten as

dp()

—1l(O+—= & — )sinpxr +¢(0)]

dd( )cos&x +@()]

+R, - R, ))(0)]+

L@ _L®O(da®)|.
; [. 7 [ 7 ﬂsmmw@(t)] (13)

= ! =ey()

€ +a)2[d{d( )Jcoskot+¢4(t)]

Following [18], and for simplification purposes, the
equations above are multiplied with sin[ew?+ ¢,(¢)]or
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cos[w? + ¢,(#)] and integrated over one period of the
oscillation cycle, which will give an approximate
differential equation for phase ¢(7) and amplitude i(7) as

T, (14)
=—d—¢[L+ 21 ,}+ —a)L+L,
dt o C oC

{Tz_o}'[re” (1) cos[@ t + p(t)]dt 15)

J M[L ¥ ZIC, ] +[r, - Ry @)

dt
where R, () is the average negative resistance under

@

large signal condition.

(16)
Ry(t) = {“} [Ry()I(t)cos?[wt + p)]at

t-T,

Since the magnitude of the higher harmonics are not
significant, the subscript of ¢(f)and A¢)are dropped.
Based on [18], we now determine the negative
resistance.

Calculation of the Region of the Nonlinear Negative
Resistance

Under steady-state free running oscillation condition,
dl(t)
dt

implies steady current, and

-0

ey(®)—0

with / is the fundamental RF current. Solving the now
homogeneous differential equation for R; - Ry(f) and
inserting the two terms into 15, we obtain

[Ti} je v () cos[mt +o(t))dt =

0 J¢-T,

(17)
dl
= [L + } +[r, Ry 0
term — 0
now we introduce
Y; Y= AR/AI ; for A—> 0,y—> 0
and [R, —m]=y Al
y=>0=[R, =R, (1) >0 (18)



RL—RN(r)=RL,,,,d—H [Ry@)cos o+ gyt >0 (19)
0 -7y

[R, -R,())I(t) > 0 gives the intersection of
[R, (z)]and [Ry]. This value is defined as 7, which is the

minimum value of the current needed for the steady-state
sustained oscillation condition.

Figure 8 shows the plot of the nonlinear negative
resistance, which is a function of the amplitude of the RF
current. As the RF amplitude gets larger the conducting
angle becomes narrower. :

T

Tangent on Rx(t)
Ylo

'd
L 3

Ru(t) - P

v

— Io

Figure 8 — Plot of negative resistance of [R (¢)] vs-

amplitude of current 1.

For a small variation of the current A/ from [, the
relation above is expressed as

[R, -Ry(D]=y Al (20)

y Al can be found from the intersection on the vertical
axis by drawing the tangential line on [R (7)] at /=1
| AI| decreases exponentially with time for y > 0.

Hence, I, represents the stable operating point. On the
other hand, if [ R (r)] intersects [R;] from the other side

for y<0 then |AZ| grows indefinitely with time. Such an
operating point does not support stable operation [18].

Calculation of the Noise Signal in Time Domain

From solving the two orthogonal equations, we need to
obtain information about current /(7) and ¢(7).

2 1
— | | ey(?)sin[ot + @()]dt
L TJIT 1)

=—M{L+ 21 }+ —a)L+;
dt o C oC

{i} je,v(t)cos[a)t + @(t)]dt
T, |5, (22)

_di(r) I =
=<0 [L + afc'}“ [R, - R, ()i(o)

The analysis of the noise signal can be accomplished by
decomposing the noise signal ey(?) to an infinite number
of random noise pulses represented by

Ed(t—t,) 23)

where ¢ is the strength of the pulse at the time instant #,
and both ¢ and ¢, are independent random variables from
one pulse to next pulse!

The time average of the square of the current pulses over
a period of time can be shown to be

%3[285(1—%)]] dt = e (t) (24)

The mean square noise voltage ¢2 (1) is generated in the

circuit in Figure 7.

A

en() e8(t—t,)

t

Figure 9 — The noise pulse at I = ¢,

Figure 9 shows the noise pulse at time instant 7 = £,

A
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[ t

N
—

=

Ie‘\'(’) sinfor +¢(t ) dt % sin[ar g+ )]

0

=

»
!

to tot+ T t

Figure 10 — The amplitude of the rectangular pulse.

QEX March/April 2016 27



The integral of the single noise pulse above gives the

rectangular pulse with the height { } esin[o 1+ (1]
T,

0

and the length of 7j as shown in Figure 10.

The integration of the single elementary noise pulse,
following the Dirac A function, results in

L?—J ,.LeN (t)sin[wt + @()]dt

(25)

~ {Ti} jg o(t—t,)sinfmt + (p(t)]c?t]

0 Ji-1y

[l} j‘g S(t—ty)sin[w? +p(t)]dt
T() t-Ty

(26)

~ I:T—zoj|g sinf[w?, +¢(1)]

since the length of time 7} is considered to be sufficiently
small for any variation of ¢(f)and /(f) during the time 7y,
The corresponding rectangular pulse of the magnitude

2 gsinfw, + ()] 1S considered to be another pulse
T,

located at 7= f, and can be expressed in the form of an
impulse function with the amplitude

2esin[w1, + o(f)located at 7= 1, for calculating the effect
using Equations (21) and (22).

The effect of { 2 }' is given by
0

IeN (t)sin[wt + p(t))dt
=Ty

[n;(r)] which consists of a number of rectangular pulses.

The time average of the square of these pulses, following

[18], can be calculated as

lTl_ [ "2 sin(or, + p(1))S( ~ 1) dt

(27)
:% I [Zga(t t)] dt
—— 1} :
e (1) =Ej[255(1—t0)]] dt (28)
=T
From the equation above,
7 (1) = 263 (1) (29)

Similarly, the total response of
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P IeN(f)COS[wt+¢(t)]dt can be expressed by [ni(7)],

0 t-T,
which consists of a large number of such pulses and the
time average of the square of these pulses is

n22 0= 2312\1 () (30)

since 2 j‘eh,(t)sin[a)t+(0(1)]dt

0 1-T,

and are orthogonal functions,

2 IeN (t)cos[mt + p(1)]dt
0 -7,

and in the frequency domain are the upper and lower side

bands relative to the carrier, and the correlation of [#,(7)]

and [ny(9)] is

m (O () =0 31)
Now consider the narrow band noise signal, which is
ey(t)=ey () +ey, () (32)
ey, (t) = e (?)sin[w, t +@(1)] (33)
ey, (1) =—e,(t)cos[w, t + p(1)] (34)

where ¢ (f)and e,,(r)are orthogonal functions, and
e,(t)and e, () are slowly varying functions of time.

eni(t)

" exalt)

Oscillating signal I,

Figure 11 — Vector presentation of the oscillator signal and
its modulation by the voltage ey; and ey;.

The calculation of 7,(f) and ¢,(7) for the free running
oscillator can be derived from Equations (21) and (22) as

v (D)sin[wt + o(t)]dt
[ITo ]. J;o 35)

——M[L+—Zl—}+ —wL+L.
dt o C oC



{T%J j.e,V (t)sinfot + @(t)]dt = [%}n, (1) (36)

t-T,

at resonance frequency @ = ay,

{—M[L +%}+[—wL +L}}
dt o C oC =

(37)
40
dt
and
1=-20920)
J dt (38)
dolt) _ _[L}nl 0 (39)
at  |2L

If Equation (39) is transformed in the frequency domain,
¢(?) can be expressed as

¢(f)=;L2 (40)
(0]

Now the spectral density of [¢(f)] is

1

|¢’(f)|2 = mlnl(f)|2 (41)
1 : ey ()
4 2L212| l(f)’ _4 2722
(42)
ey ()’
:|¢(f)| _4 2L2]2

where f'varies from —o to +oo .

The amplitude of the current can be written as
I(ty=1,+AI(t), where I, represents the stable

operating point of the free-running oscillator with a loop
gain slightly greater than 1.

From Equation (22), we can calculate

Ti j ey (t)cos[wt+ o(t)]dt

0 r-T,
_dl(t) 1 B
b (L+w2C,)+[RL RN(t)]I(t),

Vi

0 ¢-T,

[i jeN (t)cos[mwt + (a(t)]dt}
Lal (43)

= [21, %[Al(t)] +AI() ],y +AI? (t)y]

Since the amplitude of A7°(¢) is negligible, its value can
be set to 0;

[2L§[N(t)]+A1(f)lo}'+A12(f)7]

(44)
2. 2 (A1) + ATy
ot

n,(t) = Tl jeN (t)cos[@t + p(t)]dt (45)
Rl =21, %[A](t)] +AI()],y (46)
n(f)=2La AI(f)+AI(/)],y (47)

The spectral density of [ »,(f)] is
() =[4L20 + (L) 1AL (48)

and the spectral density of A/(f) can be expressed in
terms of |n, (f)|" as

1

LA L e TR T * (49)
wra +agr1)

lar(f)|* =

I, (N = 2ey ()]

2ey (N
[4L0* +(1,7)*]

(50)
= |AI(f)| =

since »,(f) and n,(¢) are orthogonal function and there is
no correlation between current and phase

n (Ony (1) =0 = 1(t)p(1) =0 (51

The output power noise spectral density of the current is
given as

P () =2R|I(N) (52)

The noise spectral density of the current is given as
() = [R(7)exp(-jor)dr 3

where R((7) is the auto-correlation function of the current
and can be written as
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I(t)I(t +7)cos[w,t + @(t)]cos[w,(t +7) (54)
+o(t+7)]

R,(T)=[

Ri(7)= %[1: + Ry (D) Jeos(w,7)cos(p + 1) —p@)] 55

Since I(f) and ¢(f) are uncorrelated, auto-correlation
function o f the current R/ 7) can be given as

From [18], but taking into consideration that both side
bands are correlated, we can write

R(r):i 12+Mex _ﬂ[,-l
. ) BT T i (56)

2
xp[ |eN (T)| IrlJ COS( wOT)

41212

Since the publication [18] skipped many stages of the
calculation, up to here, a more complete and detailed
flow is shown. These results are needed to calculate the
noise performance at the component level later. Note the
factor of 2, which results from the correlation.

2
Considering 7 1o __ 2ey (7)) , the noise spectral density
£ LY
of the current is given by

() = [R,(z)exp(-jor)d z (57)
with /= I, + AI(?); all RF-currents.
Fy : .
2
2 'eN(f)lz
2 leu(f)lz § o +[ 411}
ot ot : ;
2 Ielv(f)l2
(0+ w,) +[ YR
1 | g
(0-w,)* + 74 2 (58)
lex ()’ : ¥
8L 1
* 2
2 1,
i (0+ w,) +(};L] i
With
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d 1 ;
lex ()] R i [Ieu(fz)l ] —FMnoise  (59)
8L’ N 1
ey
g 1 Sy
lex (P (@-a,)’ +(%J2 — AM noise (60)
gra s i 2
(0+@y)* + (%)
Since ;

y 1, den@)f
e
25 4TI

for w—ay FM noise predominates over the AM noise.

For @>>ay, both the FM noise and AM noise terms give
equal contribution.

Considering o+dy>>@—ax, then

s 1 g
2 [lex (L J
2 (w_wo) % AT 61
o = L [ a &
817 1
+ 2
P () = 2R |ICS)f (62)
E 1 7]
2 [l
o (- o) +[ 4L (63)
H ey(f)
Pnoise(f) & 2RL[ 8L2 1

SinceR, , =R, +R,, the effective dynamic resistance of
the free running oscillator is given by

YR =R (O~ Repd =R, (64)

effective

where R, is the output resistance; Ry — R = 0.

The Q of the resonator circuit is expressed as



ol
qicre (65)
0, R,

The oscillator output noise power in terms of Q is given
by

1

27 \2 2 2 66
> |e|2 (0-a@,) +(%] [ZRIe(It)Pz } R
P,,,,m,(f)=& L N out

207 2R (1) & 1
2

yab ey &? 71,
BT {Qij(zm]

Figure 12 shows the Colpitts oscillator with a series
resonator and the small signal ac equivalent circuit.

Ry
‘Ii\NW
C To(t)
C

C

|

Figure 12 — Colpitts oscillator with series resonator and
small signal ac equivalent circuit.

§ Riou

en(t)

From the analytical expression of the noise analysis
above, the influence of the circuit components on the
phase noise can be explicitly calculated as

ST it : 67
3 ~— 2yt
MG Shn oy s o 2 e
40° L’1;(f) 40" L°I5(f) (68)
2ey ()

=l =g

where the frequency f'varies from —oo to +oo.
The resulting single sideband phase noise is
2
2y 'eN (f )| (69)
40* I (f)

The unknown variables are |eN ( f)‘zand 12(f)> Wwhich
need to be determined next. 12(f)will be transformed
into 1.2(f) by multiplying j2(r) with the effective
current gain Y5, '/Y,," = .

Calculation of 72 (f)

From Figure 12, the LC-series resonant circuit is in shunt
between the base and the emitter with the capacitive
negative conductance portion of the transistor. We now
introduce a collector load R, at the output, or better
yet, an impedance Z.

The oscillator base current i(t) is

Vbc (t)

i(t) =|I,|cos(wt) = =

(70)

and the collector current is

[0:7=Vi. ] ‘

1
R +jloL-
Load J[ chNJ

c0| =

1

(71)

ce

1
R +jloL-
Load ]( “)Cuvj

V \

~

Vi )
(R +[m_ ! J 72)

wC,

ILh(f) =

A0
lpl e
Q a)CIN

The voltage V., is the RF voltage across the collector-
emitter terminals of the transistor. Considering the
steady-state oscillation w— ay, the total loss resistance is
compensated by the negative resistance of the active

device as R, =R,(1)- The expression of |150(f) i is
Iczo(f) o = - ce(f) E
[&L} +[% Fadil ] (73)
(9] @, Cy 5
_' Valf) ’

2
| LY (S S
P ]
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V2(f) ‘ 74)
2
ol 1 [,_ 1 CG+G
(woL) l:Qz +[1 ng———CICZ ] :”

where Cyy is the equivalent capacitance of the negative
resistor portion of the oscillator circuit.

Lo (f)

=0y

o CCy : C. .= CC, (75)
C+Ch CH G,
ol
Q= N .
. (76)

For a reasonably high Q resonator

/ czo (d W=y s [CIN ]n,c%
Calculation of the noise voltage e, (f)

The equivalent noise voltage from the negative resistance
portion of the oscillator circuit is given an open-circuit
noise voltage [EMF] of the circuit as shown in Figure 13
below.

enr(t)

-Ry(t)

—C

Figure 13 — Equivalent representation of negative
resistance portion of the circuit at the input for the open
circuit noise voltage.

The noise voltage associated with the resonator loss
resistance R; is

ez(/f)

oo, = 4TBR, (77)

R, denotes the equivalent series loss resistor, which can
be calculated from the parallel loading resistor Ryeq, see
Figure 12.

ex(/f)

The total noise voltage power within 1 Hz bandwidth can
be given as

vea = 4KTR for B = 1 Hz bandwidth (78)
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e (/)

=, o elzi (f) et eIZVR (f) (79)

Derivation of Equation (80):

The total noise voltage power within 1 Hz bandwidth can
be given as

oeen = €2+ €32 (F) (80)

e ()

The first term in Equation (80) is the noise voltage power
due to the loss resistance R, and the second term is
associated with the negative resistance of the active
device Ry.

Figure 14 and 15 illustrate the oscillator circuit for the
purpose of the calculation of the negative resistance.

Iin

o | S

YV

AAAA

<

e

Figure 14 — Oscillator circuit for the calculation of the
negative resistance.

b Iy

‘ v '.'

=40

Al

Figure 15 — Equivalent oscillator circuit for the calculation
of the negative resistance.

From Figure 15, the circuit equation is given from
Kirchoff’s voltage law (KVL) as

Vi = Io(Xe + X, )-1,(Xc, - BX ) 81
0=-I,(x. )+ 1,(x; +h,) (82)
Considering, 1 _,
S
% =5=(l+ﬂ)Xqu +h (X, +X,,) (83)
il ” 4, X, +h,



(_ (1+8) +(C.+CZ)L]

2 HFCB Jo TGN, (84) 29 2 [ szCICZ_ﬂwZCzZJ (94)
.= n 2
; LEhAE AT R S
Y, JjoC ;
-jY,(+B)+w(C, +C,) 3
"= oyt jaC) it R= £ gm[["’—qI“’CJ . CH R
2C2(—g +a)ﬁC2 r, ¥ BY;
7 =[w(C|+Cz)~an(1+ﬂ)][Y..-ij1‘] (86)
in 0 C,(Y} +0°C}) o 2 ':[ﬁ ﬁ)_l(ﬁ ﬁj:” (96)
a}qz(qu_*_a}ﬁZQ) o XI Xl ﬂ Yll Xl
7 = oY, (C,+C,)-(1+pwC\Y, G
oG, (1} +0'Ch) ®7)  Considering (ﬂj[ﬂj — l[wcz J(wczj
2 -[Y.Z.(1+ﬂ)+w2C.(C. +cz)] WA ) BUY AT,
C, (Y} +w*C}
o C,( ®’C}) and [2C ) @C, R 97
&, ==k =9¥ (88) Y, Yn
R =(1+ﬂ)wC|Y||—G)Y|1(C|+Cz) i ¥, Y, ﬂ Yn Yu 8}
i wCy (Y} +0*C?) (89) MFroeay il Iepp
_(+B)CY, ~Y\(C +Cy) “V, kT/q kT
G, (Y} +a’Ch)
From (96) and (98)
= ;BCIYH —Y”C2
"G +e'e)) (90)
b :BYH -3 Y g:, qIC
S @zraicy Eite'd) R, = kT .
G a)C(ngm+a),BC)
Considering 5_ L 8
Fnod,; From (80), the total noise voltage power within a 1 Hz
bandwidth can be given as
g g%g On L2 A 2 2
R = eV (o= = () + €2 () (100)
2(,62 @*CY) (ﬂ’§+w'Cf)
4q1 2 +KII:F 2
PR T e 2.8 92) = lTH] i VR a0
" (g2C,+ &’ B’CIC,) (g2 + B’ CY) R e e

wﬁcf(wﬁ(/?*)zcz+gm )

R = g,,ﬂzanC " gm a)2C22 (93) where
wq(Eg,ﬁafﬂzCZ) res (Egm+ﬁza,zca) 5 {;—M—] _[ ][ J
5 Ly , redefined
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AF

ei (,an(bh 5 [4kT1d + 40 C2 ( l 02)
oG (@B G +g, &

where

prB ] e l] £ e

The values of p and ¢ depend upon the drive level.

The flicker noise contribution in Equation (80) is
AF

introduced by adding term —/>_ in /.o, where K is the
Aw

flicker noise coefficient and AF is the flicker noise
exponent. This is valid only for the bipolar transistor. For
an FET, the equivalent currents have to be used.

In this case we use a value of 10, some publications
claim much smaller numbers such as 10™'". The authors
must have done some magic to get the measured curve
fitted. In my opinion these small numbers violate the
laws of physics for bipolar transistors.

The first term in the expression above is related to the
thermal noise due to the loss resistance of the resonator
tank and the second term is related to the shot noise and
flicker noise in the transistor.

Now, the phase noise of the oscillator can be expressed
as

2le} (w)~
(pz(a,)’ A o S (103)
4oy L1 (@)
2
o SIS N e BN 11 O (104)
AF
e i g g
; ){ss3= [4kT1d+
o G(yB)C +g, 2) (105)
1 toCaa Y
(@)| =+ 1-—— 2]
Vgl we

47 V()
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AF

KIF |
dqlg. +—"g
(0]

){m: AKTR+ = »
GC@IVC e G (e
@ 1 -G +C
2v 2 _+ 1
42]|@ '\ 4L G
Considering

_21_% >>1; for
oyl CC,

a=2mf=6.28x10° Hz, L=10° H, C,=10"%F, C2=10"2F

I Gi+G ) _s07
WS E—€,C;

Since the phase noise is always expressed in dBc/Hz, we
now calculate, after simplification of Equation (84),

AF
2

2 KfIb
4918, + -

w;qz(wzw*f@g;%)

mﬁ}[d é?c;aiz ]L}

For the bias condition (which is determined from the
output power requirement), the loaded quality factor, and
the device parameters [transconductance and /'], the best

4kTR+

(107)
£(w)=10log

SSB

with respect to C, /C, .

are

constants for a given operating condition (except the
feedback capacitor), the minimum value of the phase
noise can be determined for any fixed value of C, as

e P k G +C, h (108)
7 {k"'kaqzcqu}[ C.c;}
kTR

o (109)

B o’ o)LV}
JAF
L@l watl—p

klzqmg ok e

o’ oLV

ky = (B°)? (111)



ky=g2 (112)
Where k,, ky, and k3, are constant only for a particular
drive level, withy =C, /Cz. Making k; and k; also
dependent on y, as the drive level changes, the final noise
equation is

Kk, Fé]z[y]z”

T

[T b [[Hy]Z]

1
\O? +h)

hasqed ey
S e L

ky + (113)

£(w)=10xlog

where

4
al.gk+—L"g
ky = 24 2w 2
o o, L'V,
kz =a)§(ﬂ+)2

Figure 16 shows the simulated phase noise and its
minimum for two values of C), 2 pF and 5 pF. 5 pF,
provides a better phase noise and a flatter response. For
larger C, the oscillator will cease to oscillate.

o @rpl_
o

kk[Y—} P

+
Y

el by

1
)| _,
9

=0

2l

y=m

From curve-fitting attempts, the following values for ¢
and p in Equation (114) were determined:

g=1to1l.1;p=13to0 L.6.

q and p are a function of the normalized drive level x and
need to be determined experimentally.

The transformation factor » is defined as

n=tis L e (115)
C2

Resonance Frequency @ 1 GHz

Phase Noise @ 10 kHz
dBc/Hz -80 7
-85
-90 C1=2pF
§ -95 [/ //
§ 100 =
8 -105 = —C1=5p
o 110 \J'——‘
-115
-120 % TR TR LT UL B h i r A Bt
1.0 15 20 25 3.0 35 4.0
n
dBm 15
4
s [ CT=5pF]
y 13 C1=2pF -
£ ;
"
10 S il N RN LB 3R | B B W LB
13 18 23 28 33 38

n
Figure 16 — Phase noise vs. n and output power.

The following plot in Figure 17 shows the predicted
phase noise resulting from Equation (114). For the first
time, the flicker comer frequency was properly
implemented and gives answers consistent with the
measurements. In the following chapter all the noise
sources will be added, but the key contributors are still
the resonator noise and the flicker noise. The Schottky
noise dominates further out. The break point for the
flicker noise can be clearly seen.

Phase Noise
-20
40 +
~ - C1=2pF n=15
60 | \ » C1=8pF n=2
i -100 | 3 \\\\
i 3
-120 |
\:\\*\
140 * ~—
160 - b1
-180 +
100 Hz 1000 Hz 10 kHz 100 kHz 1MHz
Offset Frequency From Carrier

Figure 17 — Using Equation (114), the phase noise for
different values of n for constant C, can be calculated.

Summary Results

The analysis of the oscillator in the time domain has
given us a design criteria to find the optimum value of
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y=C,/C, with values for y + 1 (or n) ranging from 1.5

to 4. For values above 3.5, the power is reduced
significantly.

Consistent with the previous chapters, we note
C,=C #X(C,orL,) (116)
X(C,,orLy))—>CporlL, (117)

In the case of a large value of Cp (Cp>C}), X has to be
inductive to compensate extra contributions of the device
package capacitance to meet the desired value of C;!

The following is a set of design guides to calculate the
parameters of the oscillator.

(118)

(119)

PR it (120)

C, is best be determined graphically from the noise plot.

c >{ (wZCICZ)(1+w2Y22]Lf,) }
B [Y3C, -w'C,C Y1+ W' YLLL )(C, +C, +C,)] (121)

C w?C,C,)
L] 2| et
10 »=0" | [Y2C, -Ww*C,C,)(C, +C, +C,)]

} (122)

The phase noise in dBc/Hz is shown as
4 " -

k/{m}[yr
TP ’mr} (123)

1
INCRLD

The phase noise improves with the square of the loaded
01! 10% higher Q — 20% better phase noise!

ky +
£(w) =10x log

1
i el (124)
(@) c
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The loaded Q of the resonator determines the minimum
possible level of the oscillator phase noise for given bias
voltage and oscillator frequency.

To achieve close to this minimum phase noise level set
by the loaded Q; of the resonator, the optimum (rather,
how large the value of the Cjy can be) value of Cy is to
be fixed.

To achieve the best possible phase noise level, the
feedback capacitors C; and C, should be made as large as
possible, but still generate sufficient negative resistance
for sustaining steady-state oscillation.

[_RN]ncgalive CX:LZ 1
resistance 0 1“2

, (no parasitics) (125)

The negative resistance of the oscillator circuit is
inversely proportional to the feedback capacitors.
Therefore, the limit of the feedback capacitor value is
determined by the minimum negative resistance for a
loop gain greater than unity.

From the phase noise equation discussed, the feedback
capacitor C, has more influence compared to C;. The
drive level and conduction angle of the Colpitts oscillator
circuit is a strong function of C,.

The time domain approach has provided us with the
design guide for the key components of the oscillator;
however, it did not include all the noise sources of the
transistor. By using the starting parameters, such as C;
and C, and the bias point, as well as the information
about the resonator and the transistor, a complete noise
model/analysis will now be shown.

The time domain approach has provided us with the
design guide for the key components of the oscillator;
however, it did not include all the noise sources of the
transistor. By using the starting parameters, such as C;
and C, and the bias point, as well as the information
about the resonator and the transistor, a complete noise
model/analysis will be shown now.

After some lengthy calculations and approximations,
adding shot noise, flicker noise and the loss resistor, the
equivalent expression of the phase noise can be derived
as

[ |2 (0ldqL)+ |

)
et )‘[TJ

@ gﬂz C;(CZ +Gy. —~LGC 0 3)2 it
|2 OlwiC, +G - LCG oY)

£(0) =| %TR+ (126)

o lQﬁ,{l 1 [[(Cz+c,,.,—Aczcb.ewznculjjz]

42| @ @ L\ CIG+Cy~LGG, )]




The flicker noise contribution in equation (126) is
AF
introduced by adding term K1y 4 in RF collector

current /¢, where Kyis the flicker noise coefficient and
AF is the flicker noise exponent. This is valid only for
the bipolar transistor. For an FET, the equivalent current
transformations have to be used.
"%7—x—f——'—'— F——n

V:12 3.9nF
JoF

g
n
DS 0 4o 5@ Dhws

ok

cap

2200F

Figure 18 — Colpitts Configuration — Test Circuit.

This is the most complete noise model derived and
tested.

Validation

After so many calculations a proof of concept is called
for [14-20]. Figure 18 shows the test circuit. It is the
typical Colpitts oscillator with the RF output taken from
the collector. The transistor BFG 520 is made by Philips
and is a 9 GHz NPN device used at a small fraction of /.
max.

RBS PSUP 8 Sigual Sowce Anabyzer Locxeo

Settings. Residual Hokse [T1 w/o spurs] Phase Detector 42048
519m21 Frequenc « 750000030 MWz AetPWN (10 . 30.0M) -37 dBc i
[Sigrai Level 1067 dbm Fevduai b0 $9.306 ¢

Cross Com Mode Harmonic ¢ Wesidual Fn 1304 4wz

oternal Bl Tured  Intermal Phase Dot SN ditter 4704835 ps
Fhave Nowe (4B 2] i
*F Atten s

Top 10 she/w:

.8
-
s
i

it

i 10w 0ok e ke 100E e 10w
Froquency Ottt

Figure 19: Measured Data for a 350MHz Oscillator.

The measured phase noise data is shown in Figure 19
and the simulated data in Figure 20. When applying the
analytical noise equation we obtain good agreement with
the actual measurements also.

This proves that the calculations are valid, any one need
not spend § 25,000 for a Harmonic Balance based
simulator.

The phase noise, far out, is limited by the needed
isolation/buffer stage.

oo veal Corper e - Marmernce & V8 74 veew |
oty schamatcn 15k cht e
oo
- \
; o \
s . W
e L iig
e
Vosew = = ekor T 1 o0e0s ot Vacesr
e ) St0 e [ 1 oeve i3 1 Soke T wae | 008w X 7 3060
Yiv a4 G000t [yan 73 rraere Y30 201 SheBera vas 128 Yy v8e 178 Disesu

Figure 20 — Simulated Phase Noise Data for the test circuit
of Figure 18.

e Trementy Offser Towe

Figure 21 — Phase Noise Measurements (AM and FM
noise) of a popular Wenzel 100 MHz Crystal Oscillator.

With the latest test equipment (R&S FSWP) FM and AM
noise can be measured separately. Using a popular
crystal oscillator at 100 MHz made by Wenzel, both AM
and FM components can be inspected.

There is an area where the AM noise (unfortunately) is
larger than the FM noise. That indicates the internal
buffer stage is partially driven into saturation. By,
changing some component values this can be avoided.
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Figure 22 — Mathcad Worksheet for calculated Phase Noise of a 350 MHz Colpitts Oscillator.

The MathCad worksheet, Eqn_107_350MHz.mcd file, can be found at www.arrl.org/QEXfiles.
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