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ABSTRACT 
 
The following is an introduction into the PLL basics; specifically, into such items as single- and 
multiloop synthesizers, including the use of fractional-division and direct digital synthesizers. 
We will look at the advantages and disadvantages of the various systems. Probably the most 
critical parameter in a synthesizer is its phase-noise performance; therefore, we are going to look 
at the various noise contributions within a synthesizer, and finally into its resulting overall phase 
noise. Some of the various approaches provide less phase noise than others; they will be 
discussed. 
 
1  INTRODUCTION TO LOOP BASICS 
 
The traditional synthesizer consists of a single loop and the step size of the output frequency is 
equal to the reference frequency at the phase detector. Figure 1 shows this classic approach. 
 

 
 
Figure 1--Block diagram of a PLL synthesizer driven by a frequency standard, DDS, or fractional-N 
synthesizer for high resolution at the output. The last two standards allow a relatively low division ratio 
and provide quasi-arbitrary resolution. 
 
Wireless applications with a step size of 200 kHz have made the life of the designers somewhat 
easier, since such a wide step size reduces the division ratio. As can be seen in Figure 1, the 
simplest form of a digital synthesizer consists of a voltage-controlled oscillator (VCO). My 
previous presentation on oscillators has given insights into the VCO design. For PLL 
applications, and besides the noise performance, the oscillator sensitivity, typically expressed in 
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megahertz per volt (MHz/V), needs to be stated. For high-performance test equipment 
applications, the VCO is frequently provided in the form of a YIG oscillator. These oscillators 
operate at extremely high Q and are fairly expensive. The VCO needs to be separated from any 
load by a post amplifier, which drives a sine-wave-to-logic-waveform translator. 
 
Typically, an ECL line receiver or its equivalent would serve for this function. This stage, in 
turn, drives a programmable divider and divides the oscillator frequency down to a reference 
frequency such as 200 kHz as an example. Assuming an oscillator frequency of 1 GHz, the 
division ratio would be 1 GHz/200 kHz = 5000. We will address this issue later. In Figure 1, 
however, we are looking at a 3 GHz output frequency and a step size determined by the reference 
source resolution, assuming a fixed division ratio. 
 
The phase detector, actually the phase/frequency detector (PFD), is driven by the reference 
frequency on one side and the oscillator frequency, divided down, on the other side. The PFD is 
typically designed to operate from a few kilohertz to several tens of megahertz, such as 50 MHz 
as an example. In our case, this would mean a step size of 50 MHz. Most of these phase detectors 
are using MOS technology to keep the levels for ON/OFF voltage high, and their noise 
contribution needs to be carefully evaluated. While the synthesizer is not locked, the output of 
the PFD is a dc control voltage with a superimposed ac voltage equal to the difference between 
the two frequencies prior to lock. Most PFDs have a flip-flop-based architecture, and their output 
consists of a train of pulses that must to be integrated to produce the control voltage necessary 
for driving the VCO into the locked condition. This integrator also serves as a loop filter. Its 
purpose is to suppress the reference frequency and provide the necessary phase/frequency 
response for stable locking. The basic loop really is a nonlinear control loop that, for the purpose 
of analysis, is always assumed to be linear or piecewise-linear. The most linear phase detector is 
a diode ring, but it has a low-level dc output. It requires an operational amplifier to shift the level 
of typically ±0.3 V to the high voltage required for the tuning diode. These values are typically 
somewhere between 5 and 30 V. The tuning diode itself needs to have the appropriate 
breakdown voltage and voltage-dependent linearity to provide constant loop gain. In most cases, 
this is not possible, especially if the division ratio changes by a factor of 2 or more; in this case, 
it is a wise decision to use coarse steering so that fine tuning shows a reasonably linear 
performance. These loops are also called Type 2 second-order loops. This is due to the fact that 
the loop has two integrators, one being the loop filter and other one being the tuning diode. The 
order of the loop is determined by the filter. Table 1 shows circuit and transfer characteristics of 
several PLL filters. 
 
Table 1--Circuit and Transfer Characteristics of Several PLL Filters 
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Implementation of Different Loop Filters 

 
 
Recommended Passive Filters for Charge Pumps 
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These filters are single-ended, which means that they are driven from the output of a CMOS 
switch in the phase/frequency detector. This type of configuration shows a problem under lock 
conditions: If we assume that the CMOS switches are identical and have no leakage, initially the 
output current charges the integrator and the system will go into lock. If it is locked and stays 
locked, there is no need for a correction voltage, and therefore the CMOS switches will not 
supply any output. The very moment a tiny drift occurs, a correction voltage is required, and 
therefore there is a drastic change from no loop gain (closed condition) to a loop gain (necessary 
for acquiring lock). This transition causes all kinds of nonlinear phenomena, and therefore it is a 
better choice to either use a passive filter in a symmetrical configuration or a symmetrical loop 
filter with an operational amplifier instead of the CMOS switches. Many of the modern PFDs 
have different outputs to accommodate this. An ill-conditioned filter or selection of values for 
the filter frequently leads to a very low-frequency type of oscillation, also referred to as 
motorboating. This can only be corrected by adjusting the phase/frequency behavior of the filter. 
 
An easy way of designing the appropriate loop filter and getting insight into the loop is using a 
Bode diagram. The Bode diagram shows the open-loop performance, both magnitude and phase, 
of the phase-locked loop. For stability, several rules apply. 
 
1-1  The Type 2, Second-Order Loop 
 
The following is a derivation of the properties of the Type 2, second-order loop. This means that 
the loop has two integrators, one being the diode and the other the operational amplifier, and is 
built with the order of 2 as can be seen from the pictures above. The basic principle to derive the 
performance for higher-order loops follows the same principle, although the derivation is more 
complicated. Following the math section, we will show some typical responses. 
 
The Type 2, second-order loop uses a loop filter in the form 
 

  (1) 
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The multiplier 1/s indicates a second integrator, which is generated by the active amplifier. In 
Table 1, this is the Type 3 filter. The Type 4 filter is mentioned there as a possible configuration 
but is not recommended because, as stated previously, the addition of the pole of the origin 
creates difficulties with loop stability and, in most cases, requires a change from the Type 4 to 
the Type 3 filter. One can consider the Type 4 filter as a special case of the Type 3 filter, and 
therefore it does not have to be treated separately. Another possible transfer function is 
 

  (2) 
 
with 
 

  (3) 
 
Under these conditions, the magnitude of the transfer function is 
 

  (4) 
 
and the phase is 
 
  (5) 
 
Again, as if for a practical case, we start off with the design values ωn and ξ, and we have to 
determine τ1 and τ2. Taking an approach similar to that for the Type 1, second-order loop, the 
results are 
 

  (6) 
 
and 
 

  (7) 
 
and 
 

  (8) 
 
and 
 

  (9) 
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The closed-loop transfer function of a Type 2, second-order PLL with a perfect integrator is 
 

  (10) 
 
By introducing the terms ξ and ωn, the transfer function now becomes 
 

  (11) 
 
with the abbreviations 
 

  (12) 
 
and 
 

  (13) 
 
and K = Kθ Ko/N. 
 
The 3-dB bandwidth of the Type 2, second-order loop is 
 

  (14) 
 
and the noise bandwidth is 
 

  (15) 
 
Again, we ask the question of the final error and use the previous error function, 
 

  (16) 
 
or 
 

  (17) 
 
As a result of the perfect integrator, the steady-state error resulting from a step change in input 
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phase or change of magnitude of frequency is zero. 
 
If the input frequency is swept with a constant range change of input frequency (∆ω /dt), for θ (s) 
= (2∆ω /dt)/s 3, the steady-state phase error is 
 

  (18) 
 
The maximum rate at which the VCO frequency can be swept for maintaining lock is 
 

  (19) 
 
The introduction of N indicates that this is referred to the VCO rather than to the phase/frequency 
comparator. In the previous example of the Type 1, first-order loop, we referred it only to the 
phase/frequency comparator rather than the VCO. 
 
Figure 2 shows the closed-loop response of a Type 2, third-order loop having a phase margin of 
10° and with the optimal 45°. 
 

 

 
 
 
 
 
 
Figure 2--Measured spectrum of a 
synthesizer where the loop filter is 
underdamped, resulting in ≈10-dB 
increase of the phase noise at the 
loop-filter bandwidth. In this case, we 
either don't meet the 45° phase 
margin criterion, or the filter is too 
wide, so it shows the effect of the up-
converted reference frequency. 

 
A phase margin of 10° results in overshoot, which in the frequency domain would be seen as 
peaks in the oscillator noise-sideband spectrum. Needless to say, this is a totally undesirable 
effect, and since the operational amplifiers and other active and passive elements add to this, the 
loop filter has to be adjusted after the design is finalized to accommodate the proper resulting 
phase margin (35° to 45°). The open-loop gain for different loops can be seen in Figures 3 and 4. 
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Figure 3--Integrated response for various 
loops as a function of the phase margin. 

 

 

 
 
 
 
Figure 4--Closed-loop response of a Type 2, 
third-order PLL having a phase margin of 
10°. 

 
1-2  Transient Behavior of Digital Loops Using Tri-State Phase Detectors 
 
Pull-In Characteristic. The Type 2, second-order loop is used with either a sample/hold 
comparator or a tri-state phase/frequency comparator. 
 
We will now determine the transient behavior of this loop. Figure 5 shows the block diagram. 
 

 
 

Figure 5--Block diagram of a digital PLL before lock is acquired. 
 
Very rarely in the literature is a clear distinction between pull-in and lock-in characteristics or 
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frequency and phase acquisition made as a function of the digital phase/frequency detector. 
Somehow, all the approximations or linearizations refer to a sinusoidal phase/frequency 
comparator or its digital equivalent, the exclusive-OR gate. 
 
The tri-state phase/frequency comparator follows slightly different mathematical principles. The 
phase detector gain is 
 

 
 
and is valid only in the out-of-lock state and is a somewhat coarse approximation to the real gain 
which, due to nonlinear differential equations, is very difficult to calculate. However, practical 
tests show that this approximation is still fairly accurate. 
 
Definitions: 
 

 
 
From the circuit above, 
 

 
 
The error frequency at the detector is 
 

  (20) 
 
The signal is stepped in frequency: 
 

  (21) 
 
Active Filter of First Order. If we use an active filter 
 

  (22) 
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and insert this in (20), the error frequency is 
 

  (23) 
 
Utilizing the Laplace transformation, we obtain 
 

  (24) 
 
and 
 

  (25) 
 

  (26) 
 
Passive Filter of First Order. If we use a passive filter 
 

  (27) 
 
for the frequency step 
 

  (28) 
 
the error frequency at the input becomes 
 

  (29) 
 
For the first term we will use the abbreviation A, and for the second term we will use the 
abbreviation B. 
 

  (30) 
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  (31) 
 
After the inverse Laplace transformation, our final result becomes 
 

  (32) 
 

  (33) 
 
and finally 
 

  (34) 
 
What does the equation mean? We really want to know how long it takes to pull the VCO 
frequency to the reference. Therefore, we want to know the value of t, the time it takes to be 
within 2π or less of lock-in range. 
 
The PLL can, at the beginning, have a phase error from −2π to +2π, and the loop, by 
accomplishing lock, then takes care of this phase error. 
 
We can make the reverse assumption for a moment and ask ourselves, as we have done earlier, 
how long the loop stays in phase lock. This is called the pull-out range. Again, we apply signals 
to the input of the PLL as long as loop can follow and the phase error does not become larger 
than 2π. Once the error is larger than 2π, the loop jumps out of lock. 
 
When the loop is out of lock, a beat note occurs at the output of the loop filter following the 
phase/frequency detector. 
 
The tri-state phase/frequency comparator, however, works on a different principle, and the pulses 
generated and supplied to the charge pump do not allow the generation of an ac voltage. The 
output of such a phase/frequency detector is always unipolar, but relative to the value of Vbatt/2, 
the integrator voltage can be either positive or negative. If we assume for a moment that this 
voltage should be the final voltage under a locked condition, we will observe that the resulting dc 
voltage is either more negative or more positive relative to this value, and because of this, the 
VCO will be "pulled in" to this final frequency rather than swept in. The swept-in technique 
applies only in cases of phase/frequency comparators, where this beat note is being generated. A 
typical case would be the exclusive-OR gate or even a sample/hold comparator. This 
phenomenon is rarely covered in the literature and is probably discussed in detail for the first 
time in the book by Roland Best [1]. 
 
Let us assume now that the VCO has been pulled in to final frequency to be within 2π of the 
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final frequency, and the time t is known. The next step is to determine the lock-in characteristic. 
 
Lock-in Characteristic. We will now determine lock-in characteristic, and this requires the use 
of a different block diagram. Figure 5 shows the familiar block diagram of the PLL, and we will 
use the following definitions: 
 

 
 
From the block diagram, the following is apparent: 
 

 
 
The phase error at the detector is 
 

  (35) 
 
A step in phase at the input, with the worst-case error being 2π, results in 
 

  (36) 
 
We will now treat the two cases using an active or passive filter. 
 
Active Filter. The transfer characteristic of the active filter is 
 

  (37) 
 
This results in the formula for the phase error at the detector, 
 

  (38) 
 
The polynomial coefficients for the denominator are 
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and we have to find the roots W1 and W2. Expressed in the form of a polynomial coefficient, the 
phase error is 
 

  (39) 
 
After the Laplace transformation has been performed, the result can be written in the form 
 

  (40) 
 
with 
 

   
 
and 
 

  
 
The same can be done using a passive filter. 
 
Passive Filter. The transfer function of the passive filter is 
 

  (41) 
 
If we apply the same phase step of 2π as before, the resulting phase error is 
 

  (42) 
 
Again, we have to find the polynomial coefficients, which are 
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and finally find the roots for W1 and W2. This can be written in the form 
 

  (43) 
 
Now we perform the Laplace transformation and obtain our result: 
 

  (44) 
 
with 
 

  
 
with 
 

  
 
When analyzing the frequency response for the various types and orders of PLLs, the phase 
margin played an important role. For the transient time, the Type 2, second-order loop can be 
represented with a damping factor or, for higher orders, with the phase margin. Figure 6 shows 
the normalized output response for a damping factor of 0.1 and 0.47. The ideal Butterworth 
response would be a damping factor of 0.7, which correlates with a phase margin of 45°. 
 

 

 
 
 
 
 
 
Figure 6--Normalized output response of a 
Type 2, second-order loop with a damping 
factor of 0.1 and 0.05 for Ωn = 0.631. 
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1-3  Loop Gain/Transient Response Examples 
 
Given the simple filter shown in Figure 7 and the parameters as listed, the Bode plot is shown in 
Figure 8. This approach can also be translated from a Type 1 into a Type 2 filter as shown in 
Figure 9 and its frequency response as shown in Figure 10. The lock-in function for this Type 2, 
second-order loop with an ideal damping factor of 0.707 (Butterworth response) is shown in 
Figure 11. Figure 12 shows an actual settling-time measurement. Any deviation from ideal 
damping, as we'll soon see, results in ringing (in an underdamped system) or, in an overdamped 
system, the voltage will crawl to its final value. This system can be increased in its order by 
selecting a Type 2, third-order loop using the filter shown in Figure 13. For an ideal synthesis of 
the values, the Bode diagram looks as shown in Figure 14 and its resulting response is given in 
Figure 15. 
 

 
 

Figure 7--Loop filter for a Type 1, second-order synthesizer 
 

 
 

Figure 8--Type 1, second-order loop response. 
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Figure 9--Loop filter for a Type 2, second-order synthesizer. 
 

 
 

Figure 10--Response of the Type 2, second-order loop. 
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Figure 11--Lock-in function of the Type 2, second-order PLL. It indicates a lock time of 271 µs and an 
ideal response. 
 

 
 

Figure 12--Example of settling-time measurement. 
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Figure 13--Loop filter for a Type 2, third-order synthesizer. 
 

 
 
Figure 14--Open-loop Bode diagram for the Type 2, third-order loop. It fulfills the requirement of 45° 
phase margin at the 0-dB crossover point, and corrects the slope down to −10 dB gain. 
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Figure 15--Lock-in function of the Type 2, third-order loop for an ideal 45° phase margin. 
 
The order can be increased by adding an additional low-pass filter after the standard loop filter. 
The resulting system is called a Type 2, fifth-order loop. Figure 16 shows the Bode diagram or 
open-loop diagram, and Figure 17 shows the locking function. By using a very wide loop 
bandwidth, this can be used to clean up microwave oscillators with inherent comparatively poor 
phase noise. This clean-up, which will be described in more detail in Section 3, has a dramatic 
influence on the performance. 
 

 

 
 
 
 
 
 
 
Figure 16--Bode plot of the fifth-order PLL 
system for a microwave synthesizer. The 
theoretical reference suppression is better 
than 90 dB. 
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Figure 17--Lock-in function of the fifth-order 
PLL. Note that the phase lock time is 
approximately 13.3 µs. 

 
By deviating from the ideal 45° to a phase margin of 33°, one obtains the already-mentioned 
ringing, as is evident from Figure 18. The time to settle has grown from 13.3 µ s to 62 µ s. 
 

 

 
 
 
 
 
 
Figure 18--Lock-in function of the fifth-order 
PLL. Note that the phase margin has been 
reduced from the ideal 45°. This results in a 
much longer settling time of 62 µs. 

 
To more fully illustrate the effects of nonideal phase margin, Figures 19, 20, 21, and 22 show the 
lock-in function of a different Type 2, fifth-order loop configured for phase margins of 25°, 35°, 
45°, and 55°, respectively. 
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Figure 19--Lock-in function of another Type 2, fifth-order loop with a 25° phase margin. Noticeable ringing 
occurs, lengthening the lock-in time to 1.86 ms. 
 

 
 
Figure 20--Lock-in function of the Type 2, fifth-order loop with a 35° phase margin. Ringing still occurs, 
but the lock-in time has decreased to 1.13 ms. 
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Figure 21--Lock-in function of the Type 2, third-order loop with an ideal 45° phase margin. The lock-in 
time is 686 µs. 
 
 

 
 
Figure 22--Lock-in function of the Type 2, fifth-order loop, for a 55° phase margin. The lock-in time has 
increased to 915 µs. 
 
I have already mentioned that the loop should avoid "ears" (Figure 2) with poorly designed loop 
filters. Another interesting phenomenon (which we'll hear more about in Section 3) is the trade-
off between loop bandwidth and phase noise. In Figure 23 the loop bandwidth has been made too 
wide, resulting in a degradation of the phase noise but provides faster settling time. By reducing 
the loop bandwidth from about 1 kHz to 300 Hz, only a very slight overshoot remains, improving 
the phase noise significantly. This is shown in Figure 24. 
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Figure 23--Comparison between open- and 
closed-loop noise prediction. Note the 
overshoot of around 1 kHz off the carrier. 

 

 

 
 
 
 
 
 
Figure 24--Comparison between open- and 
closed-loop noise prediction. Note the 
overshoot at around 300 Hz off the carrier. 

 
1-4  Practical Circuits 
 
Figure 25 shows a passive filter which is used for a National LMX synthesizer chip. This chip 
has a charge-pump output, which explains the need for the first capacitor. 
 

 

 
 
 
Figure 25--Type 1 high-order loop filter used 
for passive filter evaluation. The 1-nF 
capacitor is used for spike suppression as 
explained in the text. The filter consists of a 
lag portion and an additional low pass section. 

 
Figure 26 shows an active integrator operating at a reference frequency of several megahertz. 
The notch filter at the output reduces the reference frequency considerably. The notch is about 
4.5 MHz. 
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Figure 26--A Type 2 high-order filter with a notch to suppress the discrete reference spurs. 
 
Figure 27 shows the combination of a phase/frequency discriminator and a higher-order loop 
filter as used in more complicated systems, such as fractional-division synthesizers. 
 

 
 
Figure 27--Phase/frequency discriminator including an active loop filter capable of operating up to 
100 MHz. 
 
Figure 28 shows a custom-built phase detector with a noise floor of better than –168 dBc/Hz. 
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Figure 28--Custom-built phase 
detector with a noise floor of better 
than –168 dBc/Hz. This phase 
detector shows extremely low 
phase jitter. 

 
2  FRACTIONAL-DIVISION SYNTHESIZERS 
 
2-1  Introduction 
 
In conventional synthesizers, the minimum step size is equal to the reference frequency. In order 
to get a finer resolution, we can either play games at the reference as outlined in Figure 1, or we 
can use fractional division. The principle of the fractional-N-division synthesizer has been 
around for a while. In the past, implementation of this has been done in an analog system. The 
above mentioned single loop uses a frequency divider where the division ratio is an integer value 
between 1 and some very large number, hopefully not as high as 50,000. It would be ideal to be 
able to build a synthesizer with the 1.25 MHz reference or 50 MHz reference and yet obtain the 
desired step size resolution such as 25 kHz. This would lead to a much smaller division ratio and 
better phase noise performance. 
 
An alternative would be for N to take on fractional values. The output frequency could then be 
changed in fractional increments of the reference frequency. Although a digital divider cannot 
provide a fractional division ratio, ways can be found to accomplish the same task effectively. 
The most  frequently used method is to divide the output frequency by N + 1 every M cycles and 
to divide by N the rest of the time. The effective division ratio is then N + M

1 , and the average 
output frequency is given by  
 

 rfM
Nf 






 +=

1
0  (45) 

 
This expression shows that f0 can be varied in fractional increments of the reference frequency 
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by varying M. The technique is equivalent to constructing a fractional divider, but the fractional 
part of the division is actually implemented using a phase accumulator. The phase accumulator 
approach is illustrated by the following example. This method can be expanded to frequencies 
much higher than 6 GHz using the appropriate synchronous dividers. 
 
Example: considering the problem of generating 899.8 MHz using a fractional-N loop with a  
50-MHz reference frequency, 899.8 MHz = 50 MHz ( )F

KN + ; the integral part of the division N 
has to be set to 17 and the fractional part F

K  needs to be 1000
996 ; (the fractional part F

K  is not a 
integer) and the VCO output has to be divided by 996 × every 1,000 cycles. This can easily be 
implemented by adding the number 0.996 to the contents of an accumulator every cycle. Every 
time the accumulator overflows, the divider divides by 18 rather than by 17. Only the fractional 
value of the addition is retained in the phase accumulator. If we move to the lower band or try to 
generate 850.2 MHz, N remains 17 and F

K  becomes 1000
4 . This method of using fractional 

division was first introduced by using analog implementation and noise cancellation, but today it 
is implemented as a totally digital approach. The necessary resolution is obtained from the dual-
modulus prescaling, which allows for a well-established method for achieving a high-
performance frequency synthesizer operating at UHF and higher frequencies. Dual-modulus 
prescaling avoids the loss of resolution in a system compared to a simple prescaler; it allows a 
VCO step equal to the value of the reference frequency to be obtained. This method needs an 
additional counter and the dual-modulus prescaler then divides one or two values depending 
upon the state of its control. The only drawback of prescalers is the minimum division ratio of 
the prescaler for approximately N 2. The dual modulus divider is the key to implementing the 
fractional-N synthesizer principle. Although the fractional-N technique appears to have a good 
potential of solving the resolution limitation, it is not free of having its own complications. 
Typically, an overflow from the phase accumulator, which is the adder with the output feedback 
to the input after being latched, is used to change the instantaneous division ratio. Each overflow 
produces a jitter at the output frequency, caused by the fractional division, and is limited to the 
fractional portion of the desired division ratio. 
 
In our case, we had chosen a step size of 200 kHz, and yet the discrete side bands vary from 200 
kHz for F

K  = 1000
4  to 49.8 MHz for F

K  = 1000
996 . It will become the task of the loop filter to remove 

those discrete spurious. While in the past the removal of the discrete spurs has been 
accomplished by using analog techniques, various digital methods are now available. The 
microprocessor has to solve the following equation: 
 

 ( ) ( )[ ]N N
K
F

N F K N K* = +



 = − + + 1  (46) 

Example 
 
For F0 = 850.2 MHz, we obtain: 
 

 004.17
MHz 50

MHz 2.850
* ==N  

 
Following the formula above: 
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( ) ( )[ ]

N N
K
F

* = +



 =

− + + ×17 1000 4 17 1 4
1000

 

 

 
[ ]

=
+

=
16932 72

1000
17 004.  

 

 
[ ]

1000
7216932

MHz 50
+

×=outF  

 
 = 846.6 MHz + 3.6 MHz 
 
 = 850.2 MHz 
 
By increasing the number of accumulators, frequency resolution much below a step size of 1 Hz 
is possible with the same switching speed. 
 
2-2  Spur-Suppression Techniques 
 
While several methods have been proposed in the literature (see patents in references 2-7), the 
method of reducing the noise by using a Σ∆ modulator has shown to be most promising. The 
concept is to get rid of the low-frequency phase error by rapidly switching the division ratio to 
eliminate the gradual phase error at the discriminatory input. By changing the division ratio 
rapidly between different values, the phase errors occur in both polarities, positive as well as 
negative, and at an accelerated rate that explains the phenomenon of high-frequency noise push-
up. This noise, which is converted to a voltage by the phase/frequency discriminator and loop 
filter, is filtered out by the low-pass filter. The main problem associated with this noise shaping 
technique is that the noise power rises rapidly with frequency. Figure 29 shows noise 
contributions with such a Σ∆ modulator in place. 
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Figure 29--The filter frequency response/phase noise analysis graph shows  the required attenuation for 
the reference frequency of 50 MHz and the noise generated by the Σ∆ converter (three steps) as a 
function of the offset frequency. It becomes apparent that the Σ∆ converter noise dominates above  
80 kHz unless attenuated. 
 
On the other hand, we can now, for the first time, build a single-loop synthesizer with switching 
times as fast as 6 µ s and very little phase-noise deterioration inside the loop bandwidth, as seen 
in Figure 29. Since this system maintains the good phase noise of the ceramic-resonator-based 
oscillator, the resulting performance is significantly better than the phase noise expected from 
high-end signal generators. However, this method does not allow us to increase the loop 
bandwidth beyond the 100-kHz limit, where the noise contribution of the Σ∆ modulator takes 
over. 
 
Table 2--Comparison of Spur-Suppression Methods 
 

Technique Feature Problem 

DAC Phase Estimation Cancel Spur by DAC Analog Mismatch 

Pulse Generation Insert Pulses Interpolation Jitter 

Phase Interpolation Inherent Fractional Divider Interpolation Jitter 

Random Jittering Randomize Divider Frequency Jitter 

Σ∆ Modulation Modulate Division Ratio Quantization Noise 
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Table 2 shows some of the modern spur suppression methods. These three-stage Σ∆ methods 
with larger accumulators have the most potential [2-7]. 
 
The power spectral response of the phase noise for the three-stage Σ∆ modulator is calculated 
from: 
 

 
( )

( )

/Hzradsin2
12

2
)( 2

12
2

−






















⋅

⋅
=

n

refref f
f

f
fL

ππ
 (47) 

 
where n is the number of the stage of the cascaded sigma-delta modulator [8]. Equation (47) 
shows that the phase noise resulting from the fractional controller is attenuated to negligible 
levels close to the center frequency, and further from the center frequency, the phase noise is 
increased rapidly and must be filtered out prior to the tuning input of the VCO to prevent 
unacceptable degradation of spectral purity. A loop filter must be used to filter the noise in the 
PLL loop. Figure 29 showed the plot of the phase noise versus the offset frequency from the 
center frequency. A fractional-N synthesizer with a three-stage Σ∆ modulator as shown in Figure 
30 has been built. The synthesizer consists of a phase/frequency detector, an active low-pass 
filter (LPF), a voltage-controlled oscillator (VCO), a dual-modulus prescaler, a three-stage Σ∆ 
modulator, and a buffer. 
 

 
 
Figure 30--A block diagram of the fractional-N-division synthesizer built using a custom IC. Designed to 
operate with input frequencies up to 100 MHz, it uses the phase/frequency discriminator shown in Figure 
27. 
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Figure 31--Detailed block diagram of the inner workings of the fractional-N-division synthesizer chip. 
 
After designing, building, and predicting the phase noise performance of this synthesizer, it 
becomes clear that the phase noise measurement for such a system would become tricky. The 
standard measurement techniques with a reference synthesizer would not provide enough 
resolution because there are no synthesized signal generators on the market sufficiently good 
enough to measure its phase noise. Therefore, we had to build a comb generator that would take 
the output of the oscillator and multiply this up 10 to 20 times. 
 
Passive phase-noise measurement systems, based on delay lines, are not selective, and the comb 
generator confuses them; however, the Rohde & Schwarz FSEM spectrum analyzer with the K-4 
option has sufficient resolution to be used for phase-noise measurements. All of the Rohde & 
Schwarz FSE series spectrum analyzers use a somewhat more discrete fractional-division 
synthesizer with a 100-MHz reference. Based on the multiplication factor of 10, it turns out that 
there is enough dynamic range in the FSEM analyzer with the K-4 option to be used for phase-
noise measurement. The useful frequency range off the carrier for the system is 100 Hz to  
10 MHz--perfect for this measurement. 
 
Figure 32 shows the measured phase noise of the final frequency synthesizer. 
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Figure 32--Measured phase noise of the fractional-N-division synthesizer using a custom-built, high-
performance 50-MHz crystal oscillator as a reference, with the calculated degradation due to a noisy 
reference plotted for comparison. Both synthesizer and spectrum analyzer use the same reference. 
 
During the measurements, it was also determined that the standard crystal oscillator we were 
using was not good enough. We therefore needed to develop a 50-MHz crystal oscillator with 
better phase noise. Upon examination of the measured phase noise shown in Figure 32, it can 
been seen that the oscillator used as the reference was significantly better. Otherwise, this phase 
noise would not have been possible. The loop filter cutoff frequency of about 100 kHz can be 
recognized by the roll-off in Figure 32. This fractional-N-division synthesizer with a high-
performance VCO has a significantly better phase noise than other example systems in this 
frequency range. In order to demonstrate this improvement, phase-noise measurements were 
made on standard systems, using typical synthesizer chips. While the phase noise by itself and 
the synthesizer design is quite good, it is no match for this new approach, as can be seen in 
Figure 33 [9]. 
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Figure 33--Measured phase noise of a 880-MHz synthesizer using a conventional synthesizer chip. 
Comparing this to Figure 32 shows the big improvement possible with fractional-N-division synthesizers. 
 
This scheme can be extended by using an additional loop with a comb generator and translating 
the higher-frequency, such as microwave or millimeterwave, down to a frequency at which the 
fractional system can operate. Currently available ICs limit this principle to about 1 GHz because 
of prescaler noise. A nice application showing how to combine fractional-division synthesizers 
and microwave oscillators, such as YIG types, is shown in Figure 34. 
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Figure 34--Interaction of the frequency-determining modules of the first local oscillator of a microwave 
spectrum analyzer. 
 
3  NOISE IN SYNTHESIZERS 
 
3-1  Phase Noise of Oscillators 
 
All elements of a synthesizer contribute to noise. The two primary noise contributors are the 
reference and the VCO. Actually, the crystal oscillator or frequency standard is a high-Q version 
of the VCO. They are both oscillators, one electronically tunable over a high-percentage range 
and the other one tunable just enough to compensate for aging. 
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Figure 35--Equivalent feedback models of 
oscillator phase noise. 

 
Leeson introduced a linear approach for the calculation of oscillator phase noise (Figure 35). His 
formula was extended by Scherer and Rohde. Scherer added the flicker corner frequency 
calculation to it and I added the VCO term. The phase noise of a VCO is determined by 
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where 
 

(fm) = ratio of sideband power in a 1-Hz bandwidth at fm to total power in dB 
fm = frequency offset 
f0 = center frequency 
fc = flicker frequency 
Qload = loaded Q of the tuned circuit 
F = noise factor 
kT = 4.1 × 10−21 at 300 K (room temperature) 
Psav = average power at oscillator output 
R = equivalent noise resistance of tuning diode (typically 200 Ω to 10 kΩ) 
K0 = oscillator voltage gain 

 
When adding an isolating amplifier, the noise of an LC oscillator is determined by 
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  (49) 
where 
 G = compressed power gain of the loop amplifier 
 F = noise factor of the loop amplifier 
 k = Boltzmann’s constant 
 T = temperature in kelvins 
 P0 = carrier power level (in watts) at the output of the loop amplifier 
 F0 = carrier frequency in Hz 
 fm = carrier offset frequency in Hz 
 QL(=πF0τg) = loaded Q of the resonator in the feedback loop 
 aR and aE = flicker noise constants for the resonator and loop amplifier, respectively 
 
In order to evaluate the consequences of the above-stated linear equation, we are going to run 
several examples. Figure 36 shows the predicted phase noise of a crystal oscillator at 5 MHz 
with an operating Q of 1E6. High-end crystal oscillators typically use crystals with such a high 
Q. At the same time, we plot the phase noise prediction for a 4-GHz VCO with a tuning 
sensitivity of 10 MHz/V and operating Q of 400. This is only achievable with a loosely coupled 
ceramic resonator. The next logical step is to multiply the 5 MHz to 4 GHz, resulting in the 
second curve parallel to the crystal oscillator curve. As the caption for the figure indicates, the 
crossover point between the multiplied phase noise and the 4-GHz oscillator determines the best 
loop bandwidth. 

 
 
Figure 36--Predicted phase noise for a 5-MHz crystal frequency standard (top-of-the-line), 4-GHz VCO, 
and the effect of multiplication of the frequency standard to 4 GHz. The phase noise can be improved on 
the left side of the intersection and will be degraded on the right side of the intersection depending on the 
loop bandwidth chosen. (The ideal loop bandwidth would equal to the frequency offset at the point of 
intersection.) This assumes that no other components, such as the phase detector and dividers, add to 
the noise. 
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Assuming for a moment that we use just the oscillator, no tuning diode attached, and therefore 
consider only the first two terms in the equations above, we can evaluate the phase noise as a 
function of the loaded Q of the tuned circuit. Figure 37 shows this evaluation. The Q of 4000 is 
not realistic, but is calculated to show the theoretical limit. Again, this is not a VCO. 
 

 

 
 
 
 
Figure 37--Predicted phase 
noise of an 880-MHz oscillator 
(not a VCO) as a function of 
the Q. The final Q (4000) can 
only be obtained with a large 
helical resonator, and is only a 
value given for comparison 
purposes; it is not practically 
achievable. 

 
In the same fashion, assuming an oscillator not a VCO, we are going to inspect the result of 
flicker noise contribution from the transistor (Figure 38). The wide range from 50 Hz to 10 MHz 
covers the silicon FET, the bipolar transistor, and the GaAsFET. 
 

 

 
 
 
 
 
Figure 38--Predicted phase 
noise of an 880-MHz oscillator 
(not a VCO) with a resonator Q 
of 400, varying the flicker 
corner frequency from 50 Hz 
(silicon FET) to 10 MHz 
(GaAsFET). 

 
Finally, we change the oscillator into a voltage-controlled oscillator by adding a tuning diode. 
Figure 39 shows the effect of the tuning diode as a function of the tuning sensitivity. In this 
particular case, the sensitivity above 10 MHz/V solely determines the phase noise. This fact is 
frequently overlooked and has nothing to do with the Q or leakage currents of the diode. The last 
term in (48) above controls this. 
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Figure 39--Predicted phase 
noise of an 880-MHz VCO 
with tuning sensitivity ranging 
from 10 Hz to 100 MHz/V. It 
must be noted that above a 
certain sensitivity--in this 
case, 10 MHz/V--the phase 
noise is determined only by 
the circuit's tuning diode(s) 
and is no longer a function of 
the resonator and diode Q. 

 
The actual noise in the transistor therefore is modulated on an ideal carrier, referred to as IF in 
Figure 40. All the various noise sources are collected and superimposed on an ideal, noise-free 
carrier. This complex mechanism, which goes beyond the linear noise equation, is handled by a 
nonlinear analysis process incorporated in harmonic-balance simulators, such as the Serenade 
product by Ansoft, or its equivalent by Hewlett-Packard or others. 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 40--Summary of (a) noise 
sources mixed to the IF, and (b) IF 
noise contributions. 

 
Oscillators are also described in the time domain. Figure 41 shows the characterization of the 
noise, both in the time and frequency domains, and its contributors. 
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Figure 41--Characterization of a noise 
sideband and its contributions in the (a) 
time and (b) frequency domains. 
 

 
The resulting phase noise is largely influenced by the operating Q. This was already pointed out 
above. Figure 42 shows the relationship between Q and phase noise for two extreme cases. 
 

 

 
 
 
 
 
 
Figure 42--Oscillator phase noise for high-Q 
and low-Q resonators viewed as spectral 
phase noise and as carrier-to-noise ratio 
versus offset from the carrier. 

 
3-2  Phase Noise in Frequency Dividers 
 
In the previous picture showing the phase noise at the output frequency, we assumed that the 
only contributor is the frequency standard. Figure 43 shows the noise as a function of carrier 
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offset for different frequency dividers. The selection of the appropriate technology is very 
critical, and this plot does not have yet the relevant numbers for silicon-germanium (SiGe) 
technology based dividers, but it is unlikely that they are better than the 74AC series or the 74HC 
series devices. However, because of the frequency limitations of 74-series devices, we may not 
have that many choices. The GaAs divider, of course, is the noisiest one. 
 

 

 
 
 
 
 
 
Figure 43--Residual phase noise of different 
dividers as a function of offset from the carrier 
frequency. 

 
If we normalize the performance of the various dividers to 10 GHz, we can compare them much 
more easily. Figure 44 shows this comparison. 
 

 

 
 
 
 
 
 
Figure 44--Phase noise of different dividers 
normalized to 10 GHz. 

 
3-3  Noise in Phase Detectors 
 
Phase detectors rarely operate above 50 MHz. Figure 45 shows the phase noise of an ECL 
phase/frequency discriminator and a diode ring. According to Goldberg [10], CMOS-based 
phase/frequency discriminator follows more the equation 
 
  = 0 + 10 log(Fr) (50) 
 
where 0 is a constant that is equivalent to the phase/frequency detector noise with Fr = 1 Hz.  

as a function of Fr is given below for standard PLL chips: 
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 (dBc/Hz) Fr (Hz) 
−168 to −170 10 k 
−164 to −168 30 k 
−155 to −160 200 k 
−150 to −155 1 M 
−145 10 M 

 
The observant reader will notice that the CMOS phase/frequency discriminator seems to get 
worse with increasing offset from the carrier, while the plot in Figure 45 shows the opposite. 
 

 

 
 
 
 
Figure 45--Phase noise of an ECL phase 
detector compared to a silicon-diode 
mixer and hot-carrier-diode (double-
balanced) mixer. 

 
3-4  Phase Noise in Diodes and Transistors 
 
Diode Noise Model. The noise model for the diodes (Figure 46) consists of two contributions: 
the shot noise and the flicker noise. The shot noise is computed automatically and does not 
require any parameters. The flicker noise can be specified in two ways: 
 
1. Using the enhanced SPICE noise model by specifying KF, AF, and FCP in the model 
parameter list (this option is usually sufficient for most applications). 
 
2. Using bias-dependent flicker noise coefficients (specifying KF and AF at multiple bias 
points). 
 
Diode Noise Model Keywords 
keyword description unit default 
ID Required bias current for the data point Ampere  
KF Flicker noise coefficient  0.0 
AF Bias exponent of the flicker noise model  1.0 
FCP Frequency exponent of the flicker noise model  1.0 
FC Flicker noise corner frequency Hz  
 
The noise generators in the diode noise model are the series parasitic resistance, RS, and the 
intrinsic junction. The figure below illustrates the intrinsic junction noise generator. Let ∆f be the 
bandwidth (usually normalized to 1 Hz). The intrinsic noise generator has a mean-square value 
of: 
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  (51) 
 

 

 
 
 
 
Figure 46--Equivalent noise circuit for a 
diode chip. 

 
Notes on the Diode Noise Model: 
 
1. Shot noise is always present unless the SN parameter is set to zero. Turning noise off is useful 
for comparing the total circuit noise that is generated by the nonlinear devices and that generated 
by the linear circuit components. 
 
2. If the value of KF is specified as zero, then the flicker noise will not be contributed by the 
device and only shot noise is considered in the intrinsic model. 
 
3. The corner frequency noise model uses the system noise floor to internally compute the flicker 
noise coefficient, KF. The system noise floor is computed by the program using the diode 
parameters and kT. 
 
4. This noise model of course considers the actual operating temperature, which must be supplied 
to the model. 
 
BJT Noise Model. The noise model for the Gummel-Poon BJT model consists of two 
contributions: shot noise and the flicker noise. The shot noise is computed automatically and 
does not require any parameters. The flicker noise can be specified in two ways: 
 
1. Using the enhanced SPICE noise model by specifying KF, AF, and FCP in the model 
parameter list (this option is usually sufficient for most applications). 
 
2. Using bias-dependent flicker noise coefficients (specifying KF and AF at multiple bias 
points). 
 
Option 1: Specifying the Bias-Independent Flicker Noise Coefficient. This option involves the 
straightforward specification of KF, AF, and FCP that are constant with bias, as in the SPICE 
noise model. Notes on Option 1: 
 

1. Shot noise is always present unless it is turned off. Turning noise off is useful for 
comparing the total circuit noise that is generated by the nonlinear devices and that 
generated by the linear circuit components. 
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2. If the value of KF is specified as zero, flicker noise will not be contributed by the 
device and only shot noise is considered in the intrinsic model. 

 
Option 2: Specifying The Bias-Dependent Flicker Noise Coefficient or Flicker Corner Frequency 
 
Option 2 allows a bias-dependent flicker noise coefficient (that is, KF and AF vary with the bias 
point). 
 
BJT Noise Model Keywords 
keyword description unit default 
IB Required base bias current for the data point ampere  
VCE Required collector-emitter voltage for the data point volt  
VBS Base-substrate voltage required for LPNP type when 

four nodes are used. 
volt  

VCS Collector-substrate voltage required for NPN or PNP 
type when four nodes are used. 

volt-  

KF Flicker noise coefficient  0.0 
AF Bias exponent of the flicker noise model  1.0 
FCP Frequency exponent of the flicker noise model  1.0 
FC Flicker noise corner frequency Hz  
 
Notes on the BJT Noise Model: 
 
1. KF, AF, and FC can be specified as bias dependent. If only one set of noise data is specified, 
the corresponding bias point is not meaningful because all parameters are considered constant 
over all bias values. However, the bias point is needed for the program to identify the data as 
bipolar noise data. 
 
2. The corner frequency noise model option uses the system noise floor to compute the flicker 
noise coefficient, KF. The system noise floor is computed by the program using the transistor 
parameters and kT. 
 
3. This noise model of course considers the actual operating temperature, which must be supplied 
to the model. 
 
Figure 47 shows the BJT noise model. Let ∆f be the bandwidth (usually normalized to a 1-Hz 
bandwidth). The noise generators introduced in the intrinsic device are shown below, and have 
mean-square values of: 
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Figure 47--BJT noise model (not showing extrinsic parasitics). Current sources with n are noise sources. 
 
JFET and MESFET Noise Model. The noise model for the FETs consists of two contributions: 
the shot noise and the flicker noise. There are two options to specify noise in the FET model: 
 
1. Using the enhanced SPICE noise model by specifying KF, AF, and FCP in the model 
parameter list to determine the flicker noise (this option is usually sufficient for most 
applications). The shot noise will be automatically computed using the SPICE equation. 
 
2. Using bias-dependent flicker noise coefficients through a reference in the DATA block 
(specifying KF and AF at multiple bias points) and specifying the four noise parameters (Fmin, 
MGopt, PGopt, and Rn) at multiple bias points. 
 
Option 1: Specifying the Enhanced SPICE Noise Model. Option 1 is the straightforward 
specification of KF, AF, and FCP that are constant with bias, as in the SPICE noise model. 
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The drain noise model has the form: 
 

  (59) 
 
where the shot noise is derived from gm and the flicker noise is proportional to KF and the drain 
channel current, ID, and inversely proportional to frequency. The AF and FCP parameters tailor 
the flicker noise dependence on bias and frequency, respectively. 
 
Notes on Option 1: 
 
1. Shot noise is always present unless it is turned off. Turning noise off is useful for comparing 
the total circuit noise that is generated by the nonlinear devices and that generated by the linear 
circuit components. 
 
2. If the value of KF is specified as zero, then flicker noise will not be contributed by the device 
and only shot noise is considered in the intrinsic model. 
 
(Option 2) Specifying The Bias-Dependent Flicker Noise Coefficient or Flicker Corner 
Frequency. Option 2 allows the specification of the complex bias-dependent nature of the shot 
noise and flicker noise. At high frequencies, the equivalent noise sources are correlated (the 
SPICE noise model does not account for this correlation). The complete evaluation of the shot 
noise sources can be determined from the four noise parameters. Since these are functions of 
bias, they can be specified over the (VGS, VDS) bias plane. 
 
Additionally, a bias-dependent flicker noise coefficient (that is, KF and AF vary with current) 
can be specified. 
 
The MESFET noise model uses the four measured noise data (Fmin, Γopt, and Rn) at one 
frequency and multiple arbitrary bias points. The program uses this data and the FET model 
parameters to de-embed the noise data to an intrinsic noise model. The intrinsic model is 
accurate at all frequencies, and therefore can predict the noise performance at all frequencies 
given data at just one frequency point. Built-in bias dependent characteristics are used if multi-
bias noise data is not provided. 
 
FET Noise Model Keywords 
keyword description unit default 
FN Noise data measurement frequency Hz 1.0 GHz 
VGS Required gate-source voltage for the data point volt  
VDS Required drain-source voltage for the data point volt  
FMIN Required minimum noise figure in dB at FN   
MGO Required magnitude of optimum noise reflectioncoefficient at FN   
PGO Required phase of optimum noise reflection coefficient at FN   
RN Required normalized noise resistance at FN   
KF Flicker noise coefficient  0.0 
AF Bias exponent of the flicker noise model  1.0 
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FCP Frequency exponent of the flicker noise model  1.0 
FC Flicker noise corner frequency Hz  
 
Notes on the FET noise model: 
 
1. The corner frequency noise model option uses the system noise floor to compute the flicker 
noise coefficient, KF. The system noise floor is computed by the program using the transistor 
parameters and kT. 
 
2. This noise model of course considers the actual operating temperature, which must be supplied 
to the model. 
 
Noise in a MESFET is produced by sources intrinsic to the device. The same approach, but with 
different flicker corner frequencies, is highly applicable to JFETs and MOSFETs. For more 
detail as to simulation, see the Element library book for the active device portion of Ansoft's 
Serenade Design Environment product. The equivalent noisy circuit of an intrinsic FET is 
represented in Figure 48: 
 

 
 

Figure 48--Equivalent noise circuit of an intrinsic FET device. 
 
The intrinsic FET is internally represented as a noiseless nonlinear two-port with one equivalent 
noise current connected across the gate-source terminal, and one across the drain-source 
terminal. The correlations of the gate and drain noise current sources are: 
 

 R
g

C
fTKI

m

gs
Bgn

22
2

4
ω

∆=  (60) 

 

 PfgTKI mBgn ∆= 4
2

 (61) 

 
 CPRCfjTKII gsBdngn ω∆= 4*  (62) 
 
The correlation matrix of the noise current sources is 
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The gate and drain noise parameters R and P and the correlation coefficient C are related to the 
physical noise sources acting in the channel and are functions of the device structure and bias 
noise parameters. By defining measured noise parameters, Fmin, Rn and Γopt, and using a noise-
de-embedding procedure, the parameters R, P, and C and the intrinsic noise correlation matrix of 
a FET device as functions of device bias are determined by the program. 
 
In addition to the noise sources shown above, the flicker (1/f) noise can also be modeled by 
means of a noise current source connected in parallel with the intrinsic drain port. The flicker 
noise component in a narrow band, ∆f, is expressed in the form 
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where ID is the instantaneous value of the channel current, and Q, AF, and FCP are empirical 
parameters. In most practical cases, AF and FCP are directly obtained from measurements 
(typically, AF = 2 and FCP = 1), while Q is not. In Ansoft's Serenade Design Environment, Q is 
either provided directly using KF or is computed by providing the flicker corner frequency (FC). 
FC is the frequency at which the flicker noise equals the shot/diffusion noise. The corner 
frequency is defined by the equation 
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Given the corner frequency FC and the measurement bias point Vgs and Vds, the program 
automatically computes ID, gm, and P, and finally Q. 
 
More information on FET noise modeling can be found in [11, 12, 13, 14, 15, 16, 17]. 
 
Scalable Device Models. Since diodes and transistors are scalable, here are guidelines for how to 
use scale them: 
 
Microwave Diode 
 
ID = area × ID 
Cj = area × Cj 
RD = RD / area 
 
Bipolar Junction Transistor 
 
Ibf = area × Ibf Ibr = area × Ibr 
Ile = area × Ile Ilc = area × Ilc 
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Icf = area × Icf Icr = area × Icr 
Cbc = area × Cbc Cbe= area × Cbe 
Cbx= area × Cbx Rbb = Rbb / area 
RB2 = RB2 / area RC2 = RC2/ area 
RE1 = RE1 / area Ijss = Ijss × area 
 Cjss = Cjss × area 
 
Materka FET 
 
IGSS = IGSS × area 
CGS0 = CGS0 × area 
CGS1 = CGS1 × area 
CDVC = CDVC × area 
CDVS = CDVS × area 
RG = RG × area / (number of fingers × 2) 
RD = RD / area 
RS = RS / area 
 
3-5  Noise in Synthesizer Systems 
 
The block diagram in Figure 49 shows a complete synthesizer in conventional (non-fractional-N) 
form. The reason why we exclude fractional-N has to do with the Σ∆ converters and other 
additional circuits that they require. I have already explained the noise components in fractional 
synthesizers; see Figure 29. Each of these components adds to the noise, and the list of 
recommendations guides how to minimize their impact or get the best overall noise performance. 
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Figure 49--Calculation of all the noise excitation. 
 
In simple terms, Figure 50 shows the parameters to be optimized for the best overall 
performance. 
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Figure 50--Parameters to be optimized for minimum output phase noise for phase-locked sources. 
 
Figure 51 and 52 are good examples of a 10-GHz synthesized generator and a 47.104-GHz 
frequency source. A fairly large number of military applications and specifically some radar 
applications even use locked free-running oscillators rather than synthesizer/VCOs. 
 

 

 
 
 
 
 
 
Figure 51--SSB phase noise of 10-GHz 
oscillator. 
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Figure 52--Measured phase noise of 47.104-
GHz frequency source. 
 

 
4  Summary 
 
This presentation has provided some insight into the principles of phase-locked loops, 
specifically, the noise performance of oscillators, dividers, and phase/frequency discriminators. 
Guidelines have been established as to which components are critical, where the limits are, and 
how to select the optimum parameter values. The set of linear equations used are valid as long as 
the basic principle of the oscillator is being looked at. A more accurate prediction requires the 
use of a harmonic-balance simulator capable of predicting phase noise accurately. The 
presentation on oscillators from this morning, "Oscillator Basics and Low-Noise Techniques for 
Microwave Oscillators and VCOs," made extensive use of the appropriate CAD tool. It is 
necessary to finalize the prediction of the overall performance. 
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